Electroencephalographic (EEG) alpha oscillations have been related to heart rate variability (HRV) and both change in Alzheimer's disease (AD). We explored if task switching reveals altered alpha power and HRV in cognitively healthy individuals with AD pathology in cerebrospinal fluid (CSF) and whether HRV improves the AD pathology classification by alpha power alone. We compared low and high alpha event-related desynchronization (ERD) and HRV parameters during task switch testing between two groups of cognitively healthy participants classified by CSF amyloid/tau ratio: normal (CH-NAT, n = 19) or pathological (CH-PAT, n = 27). For the task switching paradigm, participants were required to name the color or word for each colored word stimulus, with two sequential stimuli per trial. Trials include color (cC) or word (wW) repeats with low load repeating, and word (cW) or color switch (wC) for high load switching. HRV was assessed for RR interval, standard deviation of RR-intervals (SDNN) and root mean squared successive differences (RMSSD) in time domain, and low frequency (LF), high frequency (HF), and LF/HF ratio in frequency domain. Results showed that CH-PATs compared to CH-NATs presented: 1) increased (less negative) low alpha ERD during low load repeat trials and lower word switch cost (low alpha: p = 0.008, Cohen's d = -0.83, 95% confidence interval -1.44 to -0.22, and high alpha: p = 0.019, Cohen's d = -0.73, 95% confidence interval -1.34 to -0.13); 2) decreasing HRV from rest to task, suggesting hyper-activated sympatho-vagal responses. 3) CH-PATs classification by alpha ERD was improved by supplementing HRV signatures, supporting a potentially compromised brain-heart interoceptive regulation in CH-PATs. Further experiments are needed to validate these findings for clinical significance.
Publications
2021
AIMS: Cardiovascular intrinsic frequencies (IFs) are associated with cardiovascular health and disease, separately capturing the systolic and diastolic information contained in a single (uncalibrated) arterial waveform. Previous clinical investigations related to IF have been restricted to studying chronic conditions, and hence its applicability for acute cardiovascular diseases has not been explored. Studies of cardiovascular complications such as acute myocardial infarction are difficult to perform in humans due to the high-risk and invasive nature of such procedures. Although they can be performed in preclinical (animal) models, the corresponding interpretation of IF measures and how they ultimately translate to humans is unknown. Hence, we studied the scalability of IF across species and sensor platforms.
MATERIALS AND METHODS: Scaled values of the two intrinsic frequencies ω1 and ω2 (corresponding to systolic and diastolic dynamics, respectively) were extracted from carotid waveforms acquired either non-invasively (via tonometry, Vivio or iPhone) in humans or invasively in rabbits and rats.
KEY FINDINGS: The scaled IF parameters for all species were found to fall within the same physiological ranges carrying similar statistical characteristics, even though body sizes and corresponding heart rates of the species were substantially different. Additionally, results demonstrated that all non-invasive sensor platforms were significantly correlated with each other for scaled IFs, suggesting that such analysis is device-agnostic and can be applied to upcoming wearable technologies.
SIGNIFICANCE: Ultimately, our results found that IFs are scalable across species, which is particularly valuable for the training of IF-based artificial intelligence systems using both preclinical and clinical data.
Despite the fact that door-to-balloon times have been greatly reduced, the rates of death and the incidence of heart failure in patients with ST-segment elevation myocardial infarction (MI) have plateaued. There is still an unmet need to further reduce MI size in the reperfusion era. Most adjunctive therapies to enhance myocardial salvage have failed, but some have shown promise. Currently, the only adjunctive therapy in a pivotal trial that has demonstrated reductions in infarct size is localized delivery of supersaturated oxygen (SSO2) therapy. This review provides background on prior infarct size reduction efforts. The authors describe the preclinical data that shows the effectiveness of SSO2 in reducing MI size, improving regional myocardial blood flow and cardiac function, and reducing adverse left ventricular remodeling-presumably by reducing patchy areas of residual ischemia within the reperfused risk zone. Potential mechanisms by which SSO2 is beneficial are described, including the delivery of high levels of dissolved oxygen through plasma to ischemic, but viable, vascular and myocardial cells, thus allowing their survival and function. The authors then describe the SSO2 clinical trials, demonstrating that in patients with anterior ST-segment elevation MI, SSO2 therapy safely and effectively reduces infarct size, improves cardiac function, and reduces adverse left ventricular remodeling.
Viral diseases are some of the most common infections affecting humans. Despite the unpleasant symptoms, most people return to their normal lives without residual symptoms. Following the acute infectious phase of some viruses, however, in some individuals symptoms may linger to the extent they are unable to return to a normal lifestyle. Following coronavirus disease 2019 infection, significant numbers of patients continued to have symptoms that persisted for months after hospital discharge. Symptoms spanned many organ systems and were prominent in the pulmonary and cardiovascular systems. The exact mechanism is not clear. This group of patients represents a new challenge to our health care systems. An organized, multi-disciplinary approach and further research are warranted to be ready to deliver better care to these patients.
Cardiac MRI is a noninvasive diagnostic tool using nonionizing radiation that is widely used in patients with ST-segment elevation myocardial infarction (STEMI). Cardiac MRI depicts different prognosticating components of myocardial damage such as edema, intramyocardial hemorrhage (IMH), microvascular obstruction (MVO), and fibrosis. But how do cardiac MRI findings correlate to histologic findings? Shortly after STEMI, T2-weighted imaging and T2* mapping cardiac MRI depict, respectively, edema and IMH. The acute infarct size can be determined with late gadolinium enhancement (LGE) cardiac MRI. T2-weighted MRI should not be used for area-at-risk delineation because T2 values change dynamically over the first few days after STEMI and the severity of T2 abnormalities can be modulated with treatment. Furthermore, LGE cardiac MRI is the most accurate method to visualize MVO, which is characterized by hemorrhage, microvascular injury, and necrosis in histologic samples. In the chronic setting post-STEMI, LGE cardiac MRI is best used to detect replacement fibrosis (ie, final infarct size after injury healing). Finally, native T1 mapping has recently emerged as a contrast material-free method to measure infarct size that, however, remains inferior to LGE cardiac MRI. Especially LGE cardiac MRI-defined infarct size and the presence and extent of MVO may be used to monitor the effect of new therapeutic interventions in the treatment of reperfusion injury and infarct size reduction. © RSNA, 2021 Online supplemental material is available for this article.
E-cigarettes have surged in popularity over the last few years, particularly among youth and young adults. These battery-powered devices aerosolize e-liquids, comprised of propylene glycol and vegetable glycerin, typically with nicotine, flavors, and stabilizers/humectants. Although the use of combustible cigarettes is associated with several adverse health effects including multiple pulmonary and cardiovascular diseases, the effects of e-cigarettes on both short- and long-term health have only begun to be investigated. Given the recent increase in the popularity of e-cigarettes, there is an urgent need for studies to address their potential adverse health effects, particularly as many researchers have suggested that e-cigarettes may pose less of a health risk than traditional combustible cigarettes and should be used as nicotine replacements. This report is prepared for clinicians, researchers, and other health care providers to provide the current state of knowledge on how e-cigarette use might affect cardiopulmonary health, along with research gaps to be addressed in future studies.
First documented in China in early December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly and continues to test the strength of healthcare systems and public health programs all over the world. Underlying cardiovascular disease has been recognized as a risk factor for coronavirus disease 2019 (COVID-19)-related morbidity and mortality since the early days of the pandemic. In addition, evidence demonstrates cardiac and endothelial damage in somewhere between one-third and three-quarters of individuals with COVID-19, regardless of symptom severity. This damage is thought to be mediated by direct viral infection, immunopathology and hypoxemia with the additional possibility of exacerbation via medication-induced cardiotoxicity. Clinically, the cardiovascular consequences of COVID-19 may present as myocarditis with or without arrhythmia, endothelial dysfunction and thrombosis, acute coronary syndromes and heart failure. Presentation can vary widely and may or may not be typical of the condition in an individual without COVID-19. There is evidence to support the prognostic utility of cardiac biomarkers (e.g., cardiac troponin) and imaging studies (e.g., echocardiography, cardiac magnetic resonance imaging) in the context of COVID-19 and building evidence suggests that cardiovascular screening may be warranted even among those with asymptomatic or mild infection and those without traditional cardiovascular risk factors. In addition, evidence suggests the potential for long-term cardiovascular consequences for those who recover from COVID-19 with implications for the field of cardiology long into the future. Even among those without COVID-19, disruption of infrastructure and changes in human behavior as a result of the pandemic also have an upstream role in cardiovascular outcomes, which have already been documented in multiple locations. This review summarizes what is currently known regarding the pathogenic mechanisms of COVID-19-related cardiovascular injury and describes clinical cardiovascular presentations, prognostic indicators, recommendations for screening and treatment, and long-term cardiovascular consequences of infection. Ultimately, medical personnel must be vigilant in their attention to possible cardiovascular symptoms, take appropriate steps for clinical diagnosis and be prepared for long-term ramifications of myocardial injury sustained as a result of COVID-19.
Myocarditis is common during viral infection with cases described as early as the influenza pandemic of 1917, and the current COVID-19 pandemic is no exception. The hallmark is elevated troponin, which occurs in 36% of COVID patients, with electrocardiogram, echocardiogram, and cardiac magnetic resonance being valuable tools to assist in diagnosis. Cardiac inflammation may occur secondary to direct cardiac invasion with the virus, or to intense cytokine storm, often encountered during the course of the disease. Angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and judicious use of beta-blockers are beneficial in management of myocarditis. Corticosteroids may be avoided during the very early phase of viral replication, but can be of clear benefit in hospitalized, critically ill patients. Statins are beneficial to shorten the course of the disease and may decrease mortality.
Background Public health emergencies may significantly impact emergency medical services responses to cardiovascular emergencies. We compared emergency medical services responses to out-of-hospital cardiac arrest (OHCA) and ST-segment‒elevation myocardial infarction (STEMI) during the 2020 COVID-19 pandemic to 2018 to 2019 and evaluated the impact of California's March 19, 2020 stay-at-home order. Methods and Results We conducted a population-based cross-sectional study using Los Angeles County emergency medical services registry data for adult patients with paramedic provider impression (PI) of OHCA or STEMI from February through May in 2018 to 2020. After March 19, 2020, weekly counts for PI-OHCA were higher (173 versus 135; incidence rate ratios, 1.28; 95% CI, 1.19‒1.37; P<0.001) while PI-STEMI were lower (57 versus 65; incidence rate ratios, 0.87; 95% CI, 0.78‒0.97; P=0.02) compared with 2018 and 2019. After adjusting for seasonal variation in PI-OHCA and decreased PI-STEMI, the increase in PI-OHCA observed after March 19, 2020 remained significant (P=0.02). The proportion of PI-OHCA who received defibrillation (16% versus 23%; risk difference [RD], -6.91%; 95% CI, -9.55% to -4.26%; P<0.001) and had return of spontaneous circulation (17% versus 29%; RD, -11.98%; 95% CI, -14.76% to -9.18%; P<0.001) were lower after March 19 in 2020 compared with 2018 and 2019. There was also a significant increase in dead on arrival emergency medical services responses in 2020 compared with 2018 and 2019, starting around the time of the stay-at-home order (P<0.001). Conclusions Paramedics in Los Angeles County, CA responded to increased PI-OHCA and decreased PI-STEMI following the stay-at-home order. The increased PI-OHCA was not fully explained by the reduction in PI-STEMI. Field defibrillation and return of spontaneous circulation were lower. It is critical that public health messaging stress that emergency care should not be delayed.